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Abstract
The Kustaanheimo–Stiefel (KS) transformation maps the non-linear and
singular equations of motion of the three-dimensional Kepler problem to the
linear and regular equations of a four-dimensional harmonic oscillator. It
is used extensively in studies of the perturbed Kepler problem in celestial
mechanics and atomic physics. In contrast to the conventional matrix-
based approach, the formulation of the KS-transformation in the language
of geometric Clifford algebra offers the advantages of a clearer geometrical
interpretation and greater computational simplicity. It is demonstrated that the
geometric algebra formalism can readily be used to derive a Lagrangian and
Hamiltonian description of the KS dynamics in arbitrary static electromagnetic
fields.

PACS numbers: 45.20.Jj, 31.25.Gy, 45.50.Pk

1. Introduction

The Kepler problem belongs to the simplest systems of classical mechanics. A detailed
understanding of its properties is of equally fundamental importance to celestial mechanics
and to atomic physics. In both areas, it is of interest to describe, either by means of analytic
approximations or numerical computation, the impact of additional non-Coulombic forces on
the dynamics. In its original form, the equation of motion

d2x

dt2
= − x

|x|3 (1)

is not well suited to this purpose because it is highly non-linear and exhibits a singularity
at the Coulomb centre where the force diverges. For numerical studies of the dynamics,
it is mandatory to find a representation of the equations of motion which avoids this
singularity.
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For the one-dimensional Kepler motion, it was already found by Euler [1] that the
introduction of a square-root coordinate u = √

x and a fictitious time τ defined by dt = x dτ

reduces the Kepler equation of motion (1) to the equation of motion of a one-dimensional
harmonic oscillator

d2u

dτ 2
+ 2Eu = 0 (2)

where E is the energy of the Kepler motion. Equation (2) is not only void of singularities, it
is also linear and thus forms a much more convenient basis for analytic calculations.

Generalizing this approach, Levi-Cività [2] regularized the two-dimensional Kepler
problem by combining the two spatial coordinates into a complex number x = x1 + ix2

and introducing a complex square-root coordinate u = √
x, which together with the fictitious-

time transformation dt = |x| dτ reduces the Kepler problem to a two-dimensional harmonic
oscillator.

Attempts to extend this regularization scheme to the three-dimensional Kepler problem
failed, until in 1964 Kustaanheimo and Stiefel [3, 4] proposed the introduction of four
regularizing coordinates instead of three, and thereby achieved the reduction of the three-
dimensional Kepler problem to a four-dimensional harmonic oscillator. This transformation,
which is known as the Kustaanheimo–Stiefel (KS) transformation, is discussed in detail in
the monograph by Stiefel and Scheifele [5]. Beyond its importance to celestial mechanics, it
has proven to be an essential tool for investigating the complicated classical dynamics of the
hydrogen atom in crossed electric and magnetic fields [6–8].

Customarily, the KS-transformation is expressed in the language of matrix algebra, which
not only necessitates awkward computations of vector and matrix components, but also lacks
a transparent geometric interpretation. An alternative formulation in terms of the geometric
algebra of Euclidean three-space was introduced by Hestenes [9]. In this formalism, the four
KS coordinates are interpreted as the components of a position spinor and are thus given a
clear geometric meaning. In addition, the formalism offers computational advantages over the
conventional matrix-based approach because it unites the four coordinates into a single spinor.

In this paper, I elaborate on the geometric algebra formulation of the KS-transformation.
The calculations will amply demonstrate the advantages of the geometric algebra over the
matrix-based formalism. The terminology used is adapted to applications in atomic physics.
In particular, I discuss the motion of an electron of unit mass and negative unit charge under
the influence of the nucleus and arbitrary static external electromagnetic fields. Nevertheless,
the actual scope of the results is much broader. They apply equally to celestial mechanics or
any other field of physics governed by the equations of motion of a perturbed Kepler problem.

A brief introduction into the properties of geometric algebra needed here is given in
section 2, where the notation used in what follows is also explained. In section 3, the geometric
algebra formulation of the KS-transformation is introduced and its relation to the matrix-based
approach is established. The spinor equation of motion given by Hestenes [9] is derived. In
section 4, a Lagrangian and Hamiltonian formulation of the KS spinor dynamics is derived. It
cannot be obtained by a simple change of variables because the KS-transformation introduces
a non-physical fourth degree of freedom and a pseudotime parameter. Nevertheless, it is
demonstrated that the geometric algebra formulation readily lends itself to an incorporation into
the Lagrangian and Hamiltonian formulations of dynamics. At the same time, the well-known
KS Hamiltonian [6, 10, 11], which is restricted to homogeneous external electromagnetic
fields, is generalized to arbitrary static fields. Section 5 presents the explicit solution of the
spinor equation of motion in a pure Coulomb field and gives the constants of motion in terms
of the KS spinor.
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2. Introduction to geometric algebra

Geometric algebra is an algebraic system designed to represent the geometric properties of
Euclidean space in the most comprehensive and systematic way possible. It was pioneered by
Hermann Grassmann and William Kingdon Clifford during the nineteenth century. Beginning
in the 1960s David Hestenes extended the algebraic techniques of Grassmann and Clifford by
a differential and integral calculus within the geometric algebra, which he called geometric
calculus [12].

This section gives only a sketch of geometric algebra as far as it is needed in the present
work. A thorough introduction to the geometric algebra of Euclidean three-space, with a
detailed discussion of applications to classical mechanics, can be found in [9]. A detailed
presentation of the mathematical properties of the geometric algebra is given in [12].

2.1. The geometric algebra of Euclidean three-space

The mathematical description of geometrical quantities customarily employs (real) scalars to
represent non-directional quantities and vectors to represent directed line segments. The
geometric algebra supplements these concepts with quantities representing directed area
segments (bivectors) and oriented volume elements (trivectors). In addition, it introduces
a multiplication of vectors called the geometric product that allows an area segment to be
regarded as the product of two orthogonal vectors spanning the appropriate plane and a
volume element as the product of three vectors spanning the space.

Formally, the construction of the geometric product starts by picking a right-handed frame
of orthonormal unit vectors σ1,σ2 and σ3. For them, the geometric product is defined by the
relation

σiσj + σjσi = 2δij . (3)

The reader may note that the defining relation (3) is the same as obeyed by the Pauli spin
matrices. It is important, however, to retain the interpretation of the σi as ordinary vectors
instead of regarding them as matrices. In addition to (3), the geometric product is required to
be associative and to obey the distributive law with respect to the usual addition of vectors.
The latter property allows one to extend the definition of the geometric product to arbitrary
vectors. For a = ∑3

i=1 aiσi and b = ∑3
i=1 biσi , one finds

ab = a1b1 + a2b2 + a3b3 + (a2b3 − a3b2)σ2σ3

+ (a3b1 − a1b3)σ3σ1 + (a1b2 − a2b1)σ1σ2. (4)

The scalar terms of this equation comprise the scalar product a · b. In addition, there are
bivector terms containing the product of two orthogonal vectors. Following what was said
above, they should be taken to represent the area spanned by a and b. This interpretation can
be confirmed by noting that the coefficients of the bivector terms are the components of the
vector cross product a × b that yields a vector orthogonal to the plane spanned by a and b.
Indeed, with the help of the unit trivector

I = σ1σ2σ3 (5)

equation (4) can be rewritten as

ab = a · b + Ia × b (6)

which neatly unifies the scalar and vector products. As the scalar product is symmetric in its
factors whereas the vector product is anti-symmetric, these products can be recovered from
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the geometric product via

a · b = 1

2
(ab + ba) a × b = 1

2I
(ab − ba). (7)

In particular, parallel vectors commute under the geometric product whereas perpendicular
vectors anti-commute, and any vector a satisfies aa = a · a.

Note that (6) contains a sum of quantities of different types, a scalar and a bivector. More
generally, an arbitrary element of the geometric algebra, called a multivector, can be written as
a sum of a scalar, a vector, a bivector and a trivector. The pure-grade parts of any multivector
can be extracted by means of a grade projector. Let 〈A〉k be the grade-k part of the multivector
A. Due to its particular importance, the scalar projector can be abbreviated as 〈A〉 = 〈A〉0,
and the scalar product of two multivectors A and B is defined by

A ∗ B = 〈AB〉. (8)

For vectors, this agrees with the scalar dot product. Any two multivectors commute under the
scalar product:

A ∗ B = B ∗ A. (9)

In a term containing different kinds of products, the scalar product as well as the vector cross
product are understood to take precedence over the geometric product. This convention has
already been used in (6).

A multivector which contains only parts of even grades, i.e., scalars and bivectors, is
referred to as an even multivector. The even multivectors form a subalgebra of the full
geometric algebra.

Finally, the reversion A† of a multivector A is obtained by interchanging the order of
vectors in any geometric product. Thus, bivectors and trivectors change sign under reversion,
whereas scalars and vectors remain unchanged. Formally, the reversion can be defined by the
properties a† = a for any vector a and

(AB)† = B†A† (A + B)† = A† + B† (10)

for multivectors A and B.

2.2. Rotations in the geometric algebra

Within the geometric algebra, rotations are conveniently represented in the form

a �→ R(a) = RaR† (11)

with an even multivector R satisfying the normalization condition

RR† = 1. (12)

Conversely, any normalized even multivector describes a rotation. An arbitrary even
multivector satisfies α = UU † � 0, so that U = √

αR is a multiple of a rotor R. Therefore,

UaU † = αRaR† (13)

and U describes a rotation–dilatation of three-space. In particular,

UaU † = 〈UaU †〉1 (14)

is a vector for any even multivector U and any vector a.
A rotation can be characterized by specifying two vectors a and b so that a is mapped to

b by a rotation in the plane 〈ab〉2 spanned by a and b. The rotor R describing this rotation is

R = 1 + ba

|a + b| = 1 + ba√
2(1 + a · b)

. (15)



The Kustaanheimo–Stiefel transformation in geometric algebra 6967

If, alternatively, a rotation is characterized by its rotation axis, given by a unit vector n, and a
rotation angle ϕ, the pertinent rotor reads

R = e−Inϕ/2 (16)

where the exponential function of an arbitrary multivector is defined by the familiar power
series

eA =
∞∑

n=0

An

n!
. (17)

It satisfies the ‘power law’ relation

eA+B = eA eB (18)

if AB = BA and

eAB = B eA if AB = BA (19)

eAB = B e−A if AB = −BA. (20)

2.3. The multivector derivative

The formalism of the multivector derivative provides a differential calculus for arbitrary
multivector functions. Let F(X) be a smooth multivector-valued function of the multivector
argument X. Neither the grades contained in X nor in F are specified. The directional derivative
in the direction of a fixed multivector A is defined by

A ∗ ∂XF(X) = dF(X + τPX(A))

dτ

∣∣∣∣
τ=0

(21)

where PX(A) projects A onto the grades contained in X. (21) agrees with the familiar definition
of the directional derivative.

Let eJ , J = 1, . . . , 8 be a basis of the geometric algebra and eJ its dual basis, i.e.,
eJ ∗ eK = δK

J . The multivector derivative is then defined to be

∂X =
∑

J

eJ eJ ∗ ∂X. (22)

It inherits the algebraic properties of its argument X. In particular, ∂X contains the same grades
as X. Note that the scalar product A ∗ ∂X is indeed the directional derivative in the direction A,
justifying the notation introduced in (21). For a vector argument x, the multivector derivative
∂x reduces to the vector derivative, which is analogous to the familiar nabla operator.

Both the directional derivative and the multivector derivative are linear operators and
satisfy Leibniz’ rule

A ∗ ∂X(F (X)G(X)) = (A ∗ ∂XF(X))G(X) + F(X)(A ∗ ∂XG(X)) (23)

∂X(F (X)G(X)) = ∗
∂X

∗
F (X)G(X) +

∗
∂X F(X)

∗
G(X). (24)

In (24), the overstars indicate the functions to be differentiated. Note that the second term
in (24) is in general different from F(X)(∂XG(X)), because due to its multivector properties
the multivector derivative does not commute with F even if F(X) is not differentiated. The
directional derivative, in contrast, is a scalar differential operator that commutes with any
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multivector that is not to be differentiated. For this reason, it is often convenient to write the
multivector derivative as

∂X = ∂AA ∗ ∂X. (25)

This form decomposes ∂X into a multivector ∂A and a scalar differential operator A∗∂X, which
can be moved freely among multivectors.

In addition, the directional derivative satisfies the chain rule

A ∗ ∂XF(G(X)) = (A ∗ ∂XG(X)) ∗ ∂GF(G) (26)

which is useful in many calculations.
A fundamental result concerning the multivector derivative is

∂X〈XA〉 = ∂X〈AX〉 = PX(A) (27)

for any multivector A. As a consequence,

∂X〈X†A〉 = ∂X〈AX†〉 = PX(A†). (28)

3. The spinor equation of motion

The KS-transformation in three dimensions can be found by representing an arbitrary position
in space not by its position vector x, but by a position spinor, i.e., the rotation–dilatation
operator transforming a fixed reference vector into the position vector x. As explained in 2,
a rotation–dilatation of the reference vector σ3 is represented in the geometric algebra by an
even multivector U according to

x = 1
2Uσ3U

†. (29)

The factor 1
2 was introduced here to stay in touch with earlier applications of the KS-

transformation to atomic dynamics [10, 11], although the present formulation of the theory
would suggest dropping it. It implies the normalization

U †U = UU † = 2r = 2|x|. (30)

Up to normalization, the ansatz (29) reproduces the square-root coordinates introduced by
Euler and Levi-Cività, respectively, if it is applied to spaces of one or two dimensions.

Given a position vector x, the choice of the spinor U is not unique. More precisely, the
gauge transformation

U �→ U e−I3α/2 (31)

with an arbitrary real parameter α does not alter x, because the additional exponential factor
describes a rotation of the reference vector σ3 around itself. In view of (29), (31) can also be
written as

U �→ U√
2r

e−I3α/2 U †
√

2r
U = e−Ixα/2rU. (32)

In this form, the gauge transformation is interpreted as describing a rotation of the final vector
x around itself that is performed after the mapping of σ3 to x. Both of these alternative
interpretations clarify why a position spinor representation in three dimensions must introduce
a fourth degree of freedom. In lower dimensions, a rotation does not leave any vector invariant,
so that the spinor transformation does not possess a gauge degree of freedom. It is also clear
from (31) or (32) that all fibres of the KS-transformation except U = 0 are circles in spinor
space.
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The inverse KS-transformation can be found from equation (15) by adapting the
normalization to (30). The position spinors corresponding to a vector x are given by

U = r + xσ3√
r + z

e−I3α/2 (33)

with arbitrary real α.
In components, the spinor U can be represented as U = u0 + Iu with u = ∑3

k=1 ukσk.
The transformation (29) then decomposes into

x = u1u3 − u0u2 y = u1u0 + u2u3 z = 1
2

(
u2

0 − u2
1 − u2

2 + u2
3

)
. (34)

Up to renumbering the components, this agrees with the conventions of [10, 11].
To obtain an equation of motion for U, time derivatives of U must be calculated.

Differentiating (29) leads to

ẋ = 1
2 U̇σ3U

† + 1
2Uσ3U̇

† = 〈U̇σ3U
†〉1. (35)

Equation (35) obviously cannot be solved for U̇ because the time derivative of the gauge
parameter α in (31) cannot be determined from the dynamics of the position vector. To arrive
at an equation of motion for U, I must therefore impose a constraint on α. To find a suitable
way of doing so, note that the gauge transformation (31) with a time-dependent α leads to
the substitution

U̇ �→ U̇ e−I3α/2 − α̇

2
UI3 e−I3α/2 (36)

and thus

U̇σ3U
† �→ U̇σ3U

† − α̇rI. (37)

Therefore, a time-dependent gauge transformation introduces a pure trivector contribution into
the product U̇σ3U

†. It can be used to eliminate the trivector component altogether, i.e. to
require

〈U̇σ3U
†〉3 = 0 (38)

which means that U̇ is chosen such as not to contain a component of motion in the direction
of the gauge degree of freedom. In view of the interpretation of the gauge transformation
associated with (32), this means that there is no rotation around the instantaneous position
vector x. If the constraint (38) is adopted, (35) can be solved for ẋ to yield

ẋ = U̇σ3U
† (39)

and

U̇ = ẋU †−1
σ3 = ẋ

U

2r
σ3. (40)

As in the one- and two-dimensional cases, the regularization of the three-dimensional
Kepler motion requires the introduction of a fictitious-time parameter τ . It is defined by

dt = 2r dτ. (41)

Derivatives with respect to τ will be denoted with a prime. Equation (40) then yields

U ′ = 2rU̇ = ẋUσ3. (42)

A specific trajectory is characterized by initial conditions x and ẋ. With the help of
equations (33) and (42), they can be converted into initial conditions for the KS spinor U,
unless x = 0. In the latter case, which is of particular significance in atomic physics
[10, 11, 13–16], U = 0, and the real-time velocity ẋ is infinite because the electron is located
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in the Coulomb singularity. A suitable limiting process must then be applied to equation (42)
to obtain a well-defined initial KS velocity U ′. Details of this procedure can be found in [15].

For the second derivative of U, I obtain

U ′′ =
(

d

dτ
ẋ

)
Uσ3 + ẋU ′σ3

= 2rẍUσ3
U †

2r
U + ẋ2U

= 2

(
ẍx +

1

2
ẋ2

)
U. (43)

Together with Newton’s equation of motion

ẍ = − x

r3
+ f (44)

with an arbitrary non-Coulombic force f , equation (43) yields the spinor equation of motion
in the form first given by Hestenes [9]:

U ′′ = 2(EK + fx)U (45)

where the Kepler energy

EK = 1

2
ẋ2 − 1

r
(46)

denotes the sum of the kinetic and Coulombic potential energies.
In the special case of pure Kepler motion, i.e. f = 0, the Kepler energy EK is equal to the

total energy E and is conserved. In this case, (45) reduces to the linear equation of motion

U ′′ = 2EU. (47)

If E < 0, this is the equation of motion of a four-dimensional isotropic harmonic oscillator
with frequency ω = √−2E with respect to τ .

If additional forces f are present, the Kepler energy is not conserved in general, so that the
work done by the external forces must be taken into account [4]. This can easily be achieved if
the external forces are generated by static electromagnetic fields, because the work done by a
magnetic field B is zero, whereas an electric field F = −∇V can be derived from a potential
V (x). In this case, the total energy E = EK − V is conserved, so that the equation of motion
reads

U ′′ = 2(E + V (x) + fx)U (48)

with f = −F − ẋ × B. (The electron is assumed to carry negative unit charge.)
It finally remains to verify that the equation of motion (45) is consistent with the constraint

(38). To prove this, first note that

ξ = 〈U ′σ3U
†〉3 (49)

is a constant of motion for any external forces f [4], because by (45)

dξ

dτ
= 〈U ′′σ3U

†〉3 + 〈U ′σ3U
′†〉3︸ ︷︷ ︸

= 0 by (14)

= 〈(EK + fx)x〉3

= 〈EKx + r2f〉3

= 0. (50)

Therefore, if the initial conditions are chosen so that ξ = 0 at τ = 0, equation (50) guarantees
〈U̇σ3U

†〉3 = 2rξ = 0 at all times.
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4. Canonical formalism

In classical investigations of atoms in external fields, the Hamiltonian nature of the dynamics
plays a central role. It is therefore essential to show how the spinor equation of motion found in
the previous section can be derived in the context of a Lagrangian or Hamiltonian formalism.
In the matrix theory of the KS-transformation, a Hamiltonian formulation is well known and
widely applied in the literature [10, 11]. Due to the introduction of an additional degree of
freedom and a fictitious-time parameter, it cannot be found by a straightforward change of
variables. In this section, it will be shown that the application of geometric algebra allows an
easy and general derivation of the Hamiltonian. At the same time, the Hamiltonian formalism
will be generalized to arbitrary inhomogeneous static external fields.

4.1. Fictitious-time transformations

Elementary expositions of Lagrangian and Hamiltonian dynamics usually treat the time t
as the externally prescribed independent variable fundamentally different from the spatial
coordinates, velocities and momenta. The formalisms are then shown to be invariant
under point transformations or canonical transformations, respectively, which may be time-
dependent, but must not transform the time variable. However, both the Lagrangian and the
Hamiltonian formalisms can be reformulated in such a way that it is possible to introduce an
arbitrary orbital parameter τ and to treat the physical time t as an additional coordinate
on the same footing as the spatial coordinates. This formalism is discussed in its full
generality by Dirac [17, 18]. For the special case of autonomous Lagrangian dynamics
and the simple form of the fictitious-time transformation used above, the full flexibility of
Dirac’s homogeneous formalism is not needed. Instead, the modifications needed to achieve
the fictitious-time transformation can be derived in a straightforward manner from Hamilton’s
variational principle.

The Lagrangian equations of motion can be derived from the action functional

S =
∫ t2

t1

dt L(q(t), q̇(t)) (51)

by requiring that for the classical paths the variation of S with respect to the path q(t) vanishes
if the variation is performed with the initial and final times t1 and t2 and the coordinates q(t1)

and q(t2) kept fixed. If a fictitious-time parameter τ is introduced by the prescription

dt = f (q, q̇) dτ (52)

with an arbitrary function f , it is tempting to rewrite the action functional as

S =
∫ τ2

τ1

dτ f (q, q̇)L(q, q̇) (53)

and regard

L̃ = f (q, q̇)L(q, q̇) = dt

dτ
L (54)

as the Lagrangian describing the dynamics with respect to τ . However, this simple procedure
is incorrect in general, because to derive the Lagrangian equations with respect to L̃ from (53),
the variation of S has to be performed with the initial and final fictitious times τ1 and τ2 kept
fixed, and due to (52) a variation of the path will alter the relation between t and τ , so that the
initial and final physical times t1 and t2 will vary.
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To establish the true relation between (51) and (53), I calculate the variation of (53) taking
the variation of t into account, i.e. q and t are varied according to

q(τ) �→ q(τ) + δq(τ ) t (τ ) �→ t (τ ) + δt (τ ) (55)

subject to the boundary conditions

δq(τ1) = δq(τ2) = 0 (56)

and with τ1 and τ2 kept fixed. Under this variation,

dτ

dt
�→ dτ

d(t + δt)
= 1

dt
dτ

+ dδt
dτ

= dτ

dt

(
1 − dτ

dt

dδt

dτ

) (57)

so that

δ
dτ

dt
= −

(
dτ

dt

)2 dδt

dτ
(58)

and hence

δq̇ = δ

(
dq

dτ

dτ

dt

)

= δ

(
dq

dτ

)
dτ

dt
+

dq

dτ
δ

(
dτ

dt

)

= dδq

dt
− q̇

dτ

dt

dδt

dτ
.

(59)

The variation of (53) then reads

δS =
∫

dτ

[
δ

(
dt

dτ

)
L +

dt

dτ

(
∂L

∂q
δq +

∂L

∂q̇
δq̇

)]

=
∫

dτ
dδt

dτ

(
L − q̇

∂L

∂q̇

)
+

∫
dt

(
∂L

∂q
δq +

∂L

∂q̇

dδq

dt

)

= −
∫

dτ
dδt

dτ
H +

∫
dt

(
∂L

∂q
− d

dt

∂L

∂q̇

)
δq (60)

where the customary partial integration was performed, the boundary conditions (56) were
used and the Hamiltonian

H = q̇
∂L

∂q̇
− L (61)

was introduced.
If only the second integral in the last line of (60) were present, it would yield the

correct equations of motion. Thus, the action functionals (51) and (53) are equivalent if
the Hamiltonian H vanishes. For autonomous systems, H is a constant of motion equal
to the energy E. If the Lagrangian L is replaced with L + E, with E regarded as a constant,
the equations of motion derived from L are unchanged, but the Hamiltonian (61) changes to
H −E = 0. Thus, the dynamics of trajectories with energy E with respect to the fictitious-time
parameter τ is described by the Lagrangian

L = dt

dτ
(L + E) = f (q, q̇)(L + E). (62)
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This Lagrangian has to be written as a function of the coordinates q and the fictitious-time
velocities q ′. If the function f is independent of the velocities, the canonical momenta are
invariant under the fictitious-time transformation, because q ′ = f (q)q̇ and

∂L
∂q ′ = f (q)

dq̇

dq ′
∂L

∂q̇
= ∂L

∂q̇
. (63)

From the time-transformed Lagrangian (62), the transformed Hamiltonian

H = q ′ ∂L
∂q ′ − L = f (q, q̇)(H − E) (64)

is obtained by the usual Legendre transformation. It must be written as a function of the
coordinates and momenta. In some cases, the passage from the Lagrangian to the Hamiltonian
description of the dynamics is impossible because the relation p = ∂L(q, q ′)/∂q ′ cannot be
solved for q ′. In these cases, the Hamiltonian (64) can be shown to describe the fictitious-time
dynamics by a discussion of the modified Hamilton’s principle analogous to the derivation of
the Lagrangian L above.

4.2. Lagrangian description

The dynamics of an atomic electron under the combined influences of the nuclear Coulomb
potential, an additional scalar potential V (x) and a magnetic field represented by a vector
potential A(x) is described by the Lagrangian

L = ẋ2

2
+

1

r
+ V (x) − A · ẋ. (65)

This Lagrangian must be transformed to a LagrangianL describing the fictitious-time dynamics
of the position spinor U. With f (q) = 2r = U †U by (41), the fictitious-time Lagrangian (62)
reads

L = 1

4
U ′†U ′ +

1

8r
〈(U ′σ3U

†)2〉 + EU †U + U †UV (x) − 〈A(x)U ′σ3U
†〉 + 2 (66)

with x = 1
2Uσ3U

†. If the constraint (38) is used, L simplifies to

L = 1
2U ′†U ′ + EU †U + U †UV (x) − 〈A(x)U ′σ3U

†〉 + 2. (67)

Both forms of the Lagrangian yield the same ‘on-shell’ dynamics for trajectories satisfying
(38). Note that only the kinetic term is influenced by the constraint, whereas the potential and
vector potential terms are not.

The momentum conjugate to U is given by

P = ∂U ′L = 1

2r
σ3U

†〈U ′σ3U
†〉1 − σ3U

†A (68)

which simplifies to

P = U ′† − σ3U
†A (69)

if (38) is applied.
As the spinor equation of motion (45) is valid under the constraint (38) only, the Lagrangian

L provides a suitable description of the dynamics if it reproduces (45) for trajectories satisfying
(38). The simplified Lagrangian (67) can therefore be used. When equations of motion are
derived from (67), the constraint (38) must be taken into account by a Lagrangian multiplier.
I will now show, however, that the unconstrained equation of motion [19]

d

dτ
∂U ′L − ∂UL = 0 (70)
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derived from (67) reproduces (45) without the constraint being explicitly dealt with, i.e. the
Lagrangian multiplier to be introduced turns out to vanish identically. I therefore ignore it
from the outset.

For the case of vanishing external potentials, (70) can easily be seen to yield

U ′′† − 2EU † = 0 (71)

which is the reversion of (47). For the terms containing the potentials, the calculation of
(70) is still straightforward, but requires a more intimate familiarity with the properties of the
multivector derivative. I will therefore present the calculation in detail.

The contribution of the scalar potential term

V = U †UV (x(U)) (72)

with x(U) = 1
2Uσ3U

† reads, by (24),

∂UV = 2U †V (x) + U †U∂UV (x(U)). (73)

The chain rule (26) then yields for any even multivector M

M ∗ ∂UV (x(U)) = (M ∗ ∂Ux(U)) ∗ ∂xV (74)

with

M ∗ ∂Ux(U) = (M ∗ ∂U ) 1
2 Uσ3U

†

= 1
2Mσ3U

† + 1
2Uσ3M

†

= 〈Mσ3U
†〉1. (75)

In the absence of a magnetic field the external force is f = ∂xV , so that

M ∗ ∂UV (x(U)) = 〈〈Mσ3U
†〉1f〉 = 〈Mσ3U

†f〉. (76)

Thus,

∂UV = ∂M(M ∗ ∂UV ) = σ3U
†f (77)

and finally

∂UV = 2U †V (x) + 2U †xf . (78)

This is the reversion of the scalar-potential terms in (45). Therefore, (78) together with (71)
indeed yields the correct equation of motion.

To evaluate the contribution of the vector potential term

A = 〈A(x)U ′σ3U
†〉 (79)

to (70), first note that

d

dτ
∂U ′A = d

dτ
(σ3U

†A(x))

= σ3U
′†A(x) + σ3U

†(x′ · ∂x)A(x). (80)

By Leibniz’ rule and (35),

∂UA = ∗
∂U 〈AU ′σ3

∗
U †〉 +

∗
∂U 〈 ∗

AU ′σ3U
†〉

= σ3U
′†A + ∂U 〈A(x(U))x′〉. (81)
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The second term on the right-hand side can be evaluated by first calculating directional
derivatives. For an arbitrary even M, (75) and the chain rule (26) yield

(M ∗ ∂U)〈A(x(U))x′〉 = (M ∗ ∂UA) ∗ ∂A〈Ax′〉
= 〈(M ∗ ∂UA(x(U)))x′〉
= 〈(M ∗ ∂Ux) ∗ ∂xAx′〉
= 〈〈〈Mσ3U

†〉1∂x〉Ax′〉
= 〈Mσ3U

†∂x〉〈Ax′〉 (82)

so that

∂U 〈A(x(U))x′〉 = ∂M(M ∗ ∂U )〈A(x(U))x′〉
= σ3U

†∂x(A · x′). (83)

Equations (80), (81) and (83) combine to
d

dτ
∂U ′A − ∂UA = σ3U

†((x′ · ∂x)A − ∂x(A · x′))

= −σ3U
†(x′ × (∂x × A))

= −2U †x(ẋ × B) (84)

which is the reversion of the magnetic-field contribution to (45).
Note that the derivation given here is valid for arbitrary external potentials V and A,

whereas conventional treatments restrict themselves to the special case of homogeneous
external fields. It can obviously be further generalized to include conservative forces of
non-electromagnetic origin. Also note that the geometric algebra formalism allows one
to do the calculations in a straightforward manner without having to resort to component
decompositions of any of the vectorial or spinorial quantities involved.

4.3. Hamiltonian description

The transition from a Lagrangian to a Hamiltonian description of the dynamics leads from
the Lagrangian (66) or (67), depending on whether or not the constraint (38) is applied, to the
Hamiltonian

H = (U ′ ∗ ∂U ′)L − L (85)

in which the velocity U ′ has to be expressed in terms of the momentum P. The transformation
requires that the relation (68) or (69) between velocity and momentum can be solved for
the velocity, which is impossible in the case of (68). Thus, the constraint (38) is not only
needed to obtain an unambiguous equation of motion for U, but also serves as a condition for
a Hamiltonian description of the spinor dynamics to exist. If it is imposed and an inessential
constant of 2 is added, the Hamiltonian reads

H = 1
2 (P † + AUσ3)(P + σ3U

†A) − EU †U − U †UV (x) = 2. (86)

Because it is time-independent, the Hamiltonian (86) is a constant of motion. To describe the
physical dynamics, its value must be chosen to be 2, whereas the physical energy E appears
as a parameter in H.

The equations of motion derived from (86) read

U ′ = ∂PH = P † + AUσ3

P ′ = −∂UH
= −2EU † − 2U †V (x) − 2U †x∂xV

− σ3(P + σ3U
†A)A − σ3U

† ∗
∂x 〈 ∗

A x′〉

(87)
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where

x′ = Uσ3U
′† = Uσ3P + U †UA (88)

was used. In terms of coordinates and momenta, the constraint (38) reads

〈Uσ3P 〉3 = 0. (89)

Equation (89) is equivalent to (38) both in the presence and in the absence of a magnetic field.
Taken together, (87) and (88) lead back to the equation of motion (45).

Finally, let me mention an important subtlety regarding the component decomposition
of the spinor equation. If, according to (34), U is represented as U = u0 + Iu with
u = ∑3

k=1 ukσk and pk denotes the momentum component conjugate to uk, the spinor
momentum is P = p0 − Ip with p = ∑3

k=1 pkσk. The negative sign is necessary because in
the spinor formulation the bivector Ikpk is conjugate to Ikuk . Dropping the bivector factors Ik

leads to the stated result.

5. The Kepler problem

The unperturbed Kepler motion is described by the Hamiltonian

H = 1
2P †P − EU †U = 2. (90)

The equations of motion derived from (90) are

U ′ = P † P ′ = 2EU † (91)

or, as in (47),

U ′′ = 2EU.

If E < 0, this is the equation of motion of an isotropic four-dimensional harmonic oscillator,
whose general solution reads

U = A cos(
√−2Eτ) + B sin(

√−2Eτ) (92)

with two constant even multivectors A and B bound, by (38) and (90), to satisfy

〈Aσ3B
†〉3 = 0 (93)

and

A†A + B†B = − 2

E
. (94)

In the case of the pure Kepler motion, the angular momentum vector L and the Lenz
vector ε are conserved. Together, they uniquely specify an orbit [9]. I will now derive the
KS-transformed expressions for these constants of motion. Throughout, the validity of the
constraint (38) will be assumed.

The angular momentum vector is given by

L = x × ẋ = −I 〈xẋ〉2. (95)

Within the geometric algebra, it is more convenient to introduce the angular momentum
bivector

l = IL = 〈xẋ〉2 (96)

which specifies the orbital plane instead of the direction perpendicular to it. By (29), (35)
and (38),

l = 〈
1
2 Uσ3U

†Uσ3U̇
†〉

2

= 1
2 〈UU ′†〉2

= 1
2 〈UP 〉2. (97)
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That l is conserved can be verified by a straightforward differentiation. Alternatively, it
can be checked that the Poisson bracket vanishes,

{l,H} = (∂PH) ∗ ∂U l − (∂UH) ∗ ∂P l

= P † ∗ ∂U l + 2EU † ∗ ∂P l

= 1
2 〈P †P 〉2 + E〈U †U〉2

= 0. (98)

Note how the Poisson bracket formalism extends not only to multivector coordinates U and P,
but also to non-scalar arguments.

The Lenz vector is given by

ε = lẋ − x

r

= lP †σ3U
−1 − Uσ3U

−1. (99)

To calculate the Poisson bracket {ε,H}, use {l,H} = 0 and

P † ∗ ∂UU−1 = −U−1P †U−1 (100)

to find

{ε,H} = l{P †σ3U
−1,H} − {Uσ3U

−1,H}
= l(P † ∗ ∂U(P †σ3U

−1) + 2EU † ∗ ∂P (P †σ3U
−1))

− P † ∗ ∂U (Uσ3U
−1)

= l(−P †σ3U
−1P †U−1 + 2EUσ3U

−1)

− P †σ3U
−1 + Uσ3U

−1P †U−1

= [l(−P †σ3U
−1P †σ3U

† + 2EUU †)

− P †U † + Uσ3U
−1P †σ3U

†]U †−1
σ3U

−1. (101)

Due to the constraint (89),

P †σ3U
† = Uσ3P (102)

so that equation (101) simplifies to

{ε,H} = [l(−P †P + 2EU †U) − P †U † + UP ]U †−1
σ3U

−1

= [−2lH + 2〈UP 〉2]U †−1
σ3U

−1

= 0. (103)

Thus, the Lenz vector ε is actually conserved.

6. Conclusion

The geometric algebra formulation of the KS-transformation endows the four KS coordinates
with a clear geometric interpretation. It was shown in this paper that it also allows for an
easy incorporation into a Lagrangian and Hamiltonian formulation of the KS theory. At the
same time, the known KS Hamiltonian, that was restricted to homogeneous external fields,
was generalized to describe the KS motion in arbitrary static external electromagnetic fields.
This result is of interest beyond the realm of atomic physics because it is equally applicable
to an arbitrary conservative non-electromagnetic force.

The calculations carried out here amply illustrate the power of the geometric algebra
formulation of the KS theory. It can thus be expected to form a convenient starting point for
analytic calculations in classical perturbation theory.
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